منابع مشابه
A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA
Armor plate changes in sticklebacks are a classic example of repeated adaptive evolution. Previous studies identified ectodysplasin (EDA) gene as the major locus controlling recurrent plate loss in freshwater fish, though the causative DNA alterations were not known. Here we show that freshwater EDA alleles have cis-acting regulatory changes that reduce expression in developing plates and spine...
متن کاملNatural selection on a major armor gene in threespine stickleback.
Experimental estimates of the effects of selection on genes determining adaptive traits add to our understanding of the mechanisms of evolution. We measured selection on genotypes of the Ectodysplasin locus, which underlie differences in lateral plates in threespine stickleback fish. A derived allele (low) causing reduced plate number has been fixed repeatedly after marine stickleback colonized...
متن کاملReverse Evolution of Armor Plates in the Threespine Stickleback
Faced with sudden environmental changes, animals must either adapt to novel environments or go extinct. Thus, study of the mechanisms underlying rapid adaptation is crucial not only for the understanding of natural evolutionary processes but also for the understanding of human-induced evolutionary change, which is an increasingly important problem [1-8]. In the present study, we demonstrate tha...
متن کاملEnvironment specific pleiotropy facilitates divergence at the Ectodysplasin locus in threespine stickleback.
Adaptive radiation occurs when divergent natural selection in different environments leads to phenotypic differentiation. The pleiotropic effects of underlying genes can either promote or constrain this diversification. Identifying the pleiotropic effects of genes responsible for divergent traits, and testing how the environment influences these effects, can therefore help to provide an underst...
متن کاملPredation's role in repeated phenotypic and genetic divergence of armor in threespine stickleback.
Predator-driven divergent selection may cause differentiation in defensive armor in threespine stickleback: (1) predatory fish and birds favor robust armor, whereas (2) predaceous aquatic insects favor armor reduction. Although (1) is well established, no direct experimental evidence exists for (2). I examined the phenotypic and genetic consequences of insect predation using F(2) families from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genome Biology
سال: 2005
ISSN: 1465-6906
DOI: 10.1186/gb-spotlight-20050329-01